skip to main content


Search for: All records

Creators/Authors contains: "Zou, Jia"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Deep learning has become the most popular direction in machine learning and artificial intelligence. However, the preparation of training data, as well as model training, are often time-consuming and become the bottleneck of the end-to-end machine learning lifecycle. Reusing models for inferring a dataset can avoid the costs of retraining. However, when there are multiple candidate models, it is challenging to discover the right model for reuse. Although there exist a number of model-sharing platforms such as ModelDB, TensorFlow Hub, PyTorch Hub, and DLHub, most of these systems require model uploaders to manually specify the details of each model and model downloaders to screen keyword search results for selecting a model. We are lacking a highly productive model search tool that selects models for deployment without the need for any manual inspection and/or labeled data from the target domain. This paper proposes multiple model search strategies including various similarity-based approaches and non-similarity-based approaches. We design, implement and evaluate these approaches on multiple model inference scenarios, including activity recognition, image recognition, text classification, natural language processing, and entity matching. The experimental evaluation showed that our proposed asymmetric similarity-based measurement, adaptivity, outperformed symmetric similarity-based measurements and non-similarity-based measurements in most of the workloads. 
    more » « less
  2. Serving deep learning models from relational databases brings significant benefits. First, features extracted from databases do not need to be transferred to any decoupled deep learning systems for inferences, and thus the system management overhead can be significantly reduced. Second, in a relational database, data management along the storage hierarchy is fully integrated with query processing, and thus it can continue model serving even if the working set size exceeds the available memory. Applying model deduplication can greatly reduce the storage space, memory footprint, cache misses, and inference latency. However, existing data deduplication techniques are not applicable to the deep learning model serving applications in relational databases. They do not consider the impacts on model inference accuracy as well as the inconsistency between tensor blocks and database pages. This work proposed synergistic storage optimization techniques for duplication detection, page packing, and caching, to enhance database systems for model serving. Evaluation results show that our proposed techniques significantly improved the storage efficiency and the model inference latency, and outperformed existing deep learning frameworks in targeting scenarios. 
    more » « less
  3. We consider the question: what is the abstraction that should be implemented by the computational engine of a machine learning system? Current machine learning systems typically push whole tensors through a series of compute kernels such as matrix multiplications or activation functions, where each kernel runs on an AI accelerator (ASIC) such as a GPU. This implementation abstraction provides little built-in support for ML systems to scale past a single machine, or for handling large models with matrices or tensors that do not easily fit into the RAM of an ASIC. In this paper, we present an alternative implementation abstraction called the tensor relational algebra (TRA). The TRA is a set-based algebra based on the relational algebra. Expressions in the TRA operate over binary tensor relations, where keys are multi-dimensional arrays and values are tensors. The TRA is easily executed with high efficiency in a parallel or distributed environment, and amenable to automatic optimization. Our empirical study shows that the optimized TRA-based back-end can significantly outperform alternatives for running ML workflows in distributed clusters. 
    more » « less
  4. null (Ed.)